

Lasertechnik & Werkstoffkunde	Stoffübersicht	HELMUT SCHMIDT UNIVERSITÄT
1. Überblick		
 Laser für messtechnis Funktionsprinzip von Induzierte Absorption Betrachtung, Verstärk Pumpmechanismen, Resonator-Verluste, N Lasertypen Gaslaser, Festkörp 	sche Anwendungen on Lasern , spontane Emission, induzierte Emission, Einst kung, Linienbreite eines Übergangs, Resonatoren, Schawlow-Townessche Anschwin Moden, Laser-Linienbreite, konfokaler Resonato verlaser, Halbleiterlaser, Faserlaser	teinsche ngbedingung, pr
 Optische Detektoren Thermische Detekt Quantendetektoren Güte und Rauscher 	oren เ ก	
 Frequenzstabilisierung Modenselektion Ursachen von Freq Verfahren zur Stab Laser als Frequenz 	g von Lasern juenzschwankungen ilisierung z- u. Längenstandards	
MLAS 2009		

Lasertechnik & Werkstoffkunde	2.1.1 Aktives Medium	HELMUT SCHMIDT UNIVERSITÄT
Gesamtbilanz z.B. für N ₂		
$\frac{dN_2}{dt}$	$= B_{12} g(v) \rho N_1 - B_{21} g(v) \rho N_2 - A_{21} N_2$	
	ind. Absorpt. ind. Emission spont.	Emission
- Im thermischen Gleichgewicht gilt $\frac{dN_2}{dt} = 0$ und nach Boltzmann:		
	$\frac{N_2}{N_1} = e^{-\frac{\Delta E}{kT}}$	
Das Gleichgewicht wird eingenommen, wenn auf die Atome		
Schwarzkörperstrahlung (Planck'scher Strahler) einwirkt.		
MLAS 2009		

Lasertechnik & Werkstoffkunde	2.1.1 Aktives Medium	HELMUT SCHMIDT UNIVERSITÄT
Gesamtbilanz im Gleichgewicht:		
$\frac{dN_2}{dt} = B_{12} \int g(t)$	$v_{21} - v \rho_v dv N_1 - B_{21} \int g(v_{21} - v) \rho_v dv N_2$	$A_2 - A_{21}N_2 = 0$
Nach Einsetz	en für $ ho_{v}$:	
<i>B</i> ₁	${}_{2} \rho_{\nu_{21}} N_1 - B_{21} \rho_{\nu_{21}} N_2 - A_{21} N_2 = 0$	
B_1	${}_{2} \rho_{\nu_{21}} N_{1} = (B_{21} \rho_{\nu_{21}} + A_{21}) N_{2}$	
B_{12}	${}_{2} \rho_{\nu_{21}} e^{h\nu_{21}/kT} = B_{21} \rho_{\nu_{21}} + A_{21}$	
$ ho_v$	$(B_{12} e^{h\nu_{21}/kT} - B_{21}) = A_{21}$	
$\rho_{\nu_{21}} = \frac{A_{21}}{B_{12} e^{h\nu_{21}/kT} - B_{21}} = \frac{8\pi n^3 h \nu_{21}^3}{c^3} \frac{1}{e^{h\nu_{21}/kT} - 1}$		
MLAS 2009		

Lasertechnik & Werkstoffkunde	2.1.1 Aktives Medium	Helmut schmidT Universität
Verstärkung		
 Energiezuwachs 	für gerichtete Welle:	
	$\frac{d\rho}{dz} = \sigma (N_2 - N_1)\rho$	
und damit	γ	
	$\rho(z) = \rho_0 e^{iz}$	
mit dem Verstärl	kungskoeffizienten	
γ($(v) = \frac{\lambda_{21}^2}{8\pi n^2} A_{21} g(v) (N_2 - N_1)$	
MI 45 2009		

Lasertechnik & 2.1.1 Aktives Medium	HELMUT SCHMIDT UNIVERSITÄT	
Dopplerverschiebung		
$v = v_{21} \pm v_{21} \frac{\mathbf{v}_z}{c} \cos \Theta \implies \Delta \omega_D = \omega - \omega_{21} = \vec{k} \cdot \vec{v}$		
Dopplerverteilung		
$f_{\rm D}(v) = \frac{c}{v_{21}} \left(\frac{m}{2\pi k T}\right)^{1/2} e^{-\frac{mc^2}{2k T v_{21}^2} (v - v_{21})^2}$		
Dopplerbreite		
$\Delta v_D = 2v_{21} \left(\frac{2kT}{mc^2} \ln 2\right)^{1/2} = 7,16 \times 10^{-7} \times v_{21} \sqrt{T/m}$		
Für Ne (m=20) und T=293 K $\Rightarrow \Delta v_{D}$ = 1.4 GHz		
MLAS 2009 24 🔀		

Lasertechnik & Werkstoffkunde	2.1.3. Laser-Resonatoren	HELMUT SCHMIDT UNIVERSITÄT
Grundmode		
Strahltaille:	$w_0 = \left(\frac{L\lambda}{2\pi n}\right)^{1/2}$	
Aufweitung:	$w(z) = w_0 \left[1 + \left(\frac{\lambda z}{n \pi w_0^2} \right)^2 \right]^{1/2} \approx \frac{\lambda z}{n \pi w_0^2}$	0
Divergenzwinkel:	$\Theta \approx \tan \Theta = \frac{2w(z)}{z} = \frac{2\lambda}{n\pi w_0}$	
Intensität:	$I(r,z) = \frac{2P_s}{\pi w^2(z)} e^{-\frac{2r^2}{w^2(z)}} \approx \frac{P_s}{\pi w^2(z)} =$	$\frac{n^2 P_s A_s}{\lambda^2 z^2}$
Für λ = 600 nm, L=	$a = 1 \text{ m}$: $\Rightarrow w_0 = 0,3 \text{ mm}, \theta = 1 \text{ mrad}$	
MLAS 2009	4	

Lasertechnik & Werkstoffkunde	3.1 Thermische Detektoren	Helmut schmidT UNIVERSITÄT
 Temperaturkoeffizient des spezifischen Widerstands: Erhöhte Temperatur T führt zu Störung der Gitterperiodizität und damit zu vermehrten Stößen von Elektronen mit dem Gitter. Dies führt zur Änderung des spezifischen Widerstandes mit T. Für viele Metalle gilt in guter Näherung lineare Widerstandsänderung mit <i>T</i>, die sich schreiben lässt als: 		
	$\rho = \rho_0 \left(1 + \alpha \left(T - T_0 \right) \right)$	
$ ho_{o}$ – spezifischer Wic $lpha$ ist der Tempera	lerstand bei Temperatur <i>T_o</i> turkoeffizient, der sich schreiben läss	t als:
	$\alpha = \frac{1}{\rho_i} \frac{d\rho_i}{dT}$	
Bei allen unmagnetischen Metallen gilt $\alpha \approx 0,4$ %K ⁻¹ .		
MLAS 2009		70 🛛 🗹 🖒 🖂

Lasertechnik & Werkstoffkunde	3.1 Thermische Detektoren	HELMUT SCHMIDT UNIVERSITÄT
Temperaturkoeffizi	ent:	
Die Änderung der L durch die Abhängig Temperatur:	eitfähigkeit mit Temperatur wird vor allem gkeit der Eigenladungsträgerkonzentration $n_i = N^* e^{-W_g/2kT}$.	bestimmt von der
Differenzieren von konzentration:	n, ergibt für die Änderung der relative	en Eigen-
	$\frac{1}{n_i}\frac{dn_i}{dT} = \frac{W_g}{2kT^2}$	
Der Temperaturkoef peraturabhängigkeit	fizient wird damit unter Vernachlässigung der Beweglichkeiten:	der Tem-
	$\alpha = \frac{1}{\rho_i} \frac{d\rho_i}{dT} = -\frac{1}{n_i} \frac{dn_i}{dT} = -\frac{W_g}{2kT^2}.$	
Mit W_g =0,75 eV und	T= 293 K wird $(1/\rho_i) \cdot d\rho_i / dT$ = -5% K ⁻¹ .	
MLAS 2009	74	

Lasertechnik & Werkstoffkunde 3.1 Thermische Detektoren • Voltasche Spannungsreihe									
Aus den verschiedenen Metallkombinationen folgt die Voltasche Spannungsreihe. Das Metall, das Pluspol bildet, steht jeweils weiter rechts. Voltasche Spannungsreihe.							he iter		
	Werkstoff	Pt	Ag	Cu	Fe	Sn	Pb	Zn	
	$U_{K}(V)$	0	0,12	0,20	0,34	0,64	0,70	1,09	
 Differenz zwischen zwei Stoffen ergibt Kontaktspannung. Für Sn/Cu z.B. ist U_{SnCu}=0,44V und für Cu/Sn U_{CuSn}=-0,44 V. In geschlossener Kette von Leitern ist damit die Summe der Kontaktpotentiale (bei gleicher Temperatur) Null. 									
MLAS	2009						76		

*	Lasertechnik & Werkstoffkunde	Seeb	eck-Effek	ffekt 3.1 Therm. Detektoren			HELMUT SC UNIVERS	HMIDT			
_	 Thermokraft: Ist die auf 1 K Temperaturdifferenz bezogene Thermospannung. 										
_	 Thermoelektrische Spannungsreihe: Werden Stoffe nach ihrer Thermokraft, bezogen auf Pt, geordnet, ergibt sich thermoelektrische Spannungsreihe. 										
	Material	Bi	CuNi44	Ni	Pt	Cu	Fe	NiCr			
	Thermokraft (µV/K)	-77	-35	-15	0	8	19	25			
									±		
М	MLAS 2009 78 🗹 🗹 🕞 🕨										

/ Lasertechnik & 3. Detektoren für Laserstrahlung HELMUT SCHMIDT Werkstoffkunde 3.3 Güte und Rauschen von Detektoren 1. Empfindlichkeit Ein Signal S (Strom oder Spannung) pro Strahlungsleistung P_L bestimmt die Empfindlichkeit (responsivity): $R = \frac{S}{P_L}$ 2. Rauschäquivalente Leistung (Noise Equivalent Power) Die minimale Strahlungsleistung P_L^R , die erforderlich ist, um ein Signal-Rausch-Verhältnis von eins zu erhalten, bestimmt das Rauschverhalten eines Detektors (S_R – Detektorrauschen): $NEP = \frac{P_L^R}{\sqrt{B}} = \frac{S_R}{R\sqrt{B}} = \frac{P_L S_R}{S\sqrt{B}}$ 96 4 4 1 MLAS 2009

Lasertechnik & 7. 2 Messverfahren	HELMUT SCHMIDT UNIVERSITÄT
Anmerkung	
 In der Berechnung f ür die Dopplerverschiebung kommen die Streuwink denen das Licht zu den einfallenden Strahlen beobachtet wird, nicht me 	el, unter ehr vor.
Stattdessen tritt der Schnittwinkel α der zwei Strahlen auf.	
Er tritt an die Stelle der Streuwinkel. Damit ergibt sich gleicher Ausdruc Referenzstrahlmethode.	k wie bei
 Unabhängig von der Beobachtungsrichtung wird stets die gleiche Frequencesen. 	uenz
Damit kann ein großer Öffnungswinkel am Detektor gewählt werden, ol die Dopplerfrequenz verschmiert und damit die Geschwindigkeitsauflös verschlechtert wird.	hne dass sung
Sie wird jetzt begrenzt durch die Öffnungswinkel der zwei Strahlen, die Schnittbereich gleichzeitig das Messvolumen definieren.	in ihrem
MLAS 2009 172 📢	

